Transfer function model used to predict white egg prices, 2000 – 2017
DOI:
https://doi.org/10.22231/asyd.v19i2.1263Keywords:
SARIMA, Box Jenkins, sorghum, egg, prediction, poultry productionAbstract
Egg is one of the most accessible and widely available protein sources in the market. The objective of this study was to develop a time series model to predict monthly nominal average white egg prices paid to the producer (AWEPP) in Mexico using transfer function models (TFM) and to evaluate their relation with nominal average rural sorghum prices (NARSP). The parameters and the predictions were estimated with the maximum likelihood method and were statistically appropriate and significant. The best TFM that represented the behavior of AWEPP was that of two autoregressive coefficients, three of moving average, two degrees of denominator r, one degree of numerator s, and one coefficient b. It was found that the NARSP has an influence on the AWEPP one month later, decreasing the original variance of the AWEPP from 0.01036 to 0.009771 with the transfer model. The TFM generates better predictions of the AWEPP than the SARIMA model, because it takes into account the temporal evolution of the NARSP obtaining estimates that are closer to reality, useful for planning and for decision-making in the poultry sector in the short and medium term.
References
Box GE, GM Jenkins. 1976. Time Series Analysis: Forecasting and Control. Revised. San Francisco. Ed., Holden-day, 575 p.
Box GE, GM Jenkins, GC Reinsel. 1994. Time Series Analysis: Forecasting and Control. Englewood Cliffs, NJ. 3rd ed. Ed. Prentice Hall.
Brockwell PJ. 2004. Representations of continuous-time ARMA processes. In: Journal of Applied Probability. 41: 375-382.
CEDRSSA (Centro de Estudios para el Desarrollo Rural Sustentable y la Soberanía Alimentaria). 2014. Evo ución de los precios del maíz, frijol y sorgo. In: http://www.cedrssa.gob.mx/?doc=2643.
Chiogna M, C Gaetan, G Masarotto. 2007. Automatic identification of seasonal transfer function models by means of iterative stepwise and genetic algorithms. In: J Time Ser Anal, (29)1: 37–50.
Chu KY. 1978. Short-run forecasting of commodity prices: An application of autoregressive moving average models. In: IMF Staff Papers. 25(1), pp: 90-111.
Cox DR, GE Box. 1964. An analysis of transformations. In: Journal of the Royal Statistical Society. Serie B. 26: 211-252.
Cruz Jiménez S, García Mata R, Mora Flores JS, García Sánchez RC. 2016. El mercado de huevo para plato en México, 1960 – 2012. In: Agricultura Sociedad y Desarrollo. 13(3) pp: 385 - 399.
García Mata R, García Salazar JA, García Sánchez RC. 2003. Teoría del Mercado de Productos Agrícolas. Instituto de Socioeconomía, Estadística e Informática, Programa de Postgrado en Economía. Colegio de Postgraduados. Montecillo, Texcoco Edo de México. 382 p.
Granger C, William J. 1969. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. In: Econometrica. 37(3):424 – 438.
Hillmer SC. GC Tiao. 1979. Likelihood Function of stationary Multiple Autoregresive Moving Average Models. In: Journal of the American Statistical Association 74. pp: 652 – 660.
Jarque CM, Anil KB. 1987. A test for Normality of observations and regression residuals. In: International Statistical Review. 55(2):163-172.
Luis Rojas S, García Sánchez RC, García Mata RC, Arana Coronado OA, González Estrada A. 2019. Metodología Box - Jenkins para pronosticar los precios de huevo blanco pagados al productor en México. Agrociencia. 53(6): 347 – 365.
Maridakis SG, Steven CW. 1989. Forecasting Methods for Management. 5th Ed. New York: John Wiley & Sons. 470 p.
Ortega Sánchez de Tagle J. 2014. Plan Rector Visión 2014 – 2024. “Sistema producto huevo para plato”. Imagen Editorial Yire. Cd. de México. 110 p.
Ramírez Guzmán ME. 1993. SAS macro for analyzing step and impulse response functions derived from transfer function models. In: http://www.sascommunity.org/wiki/SAS_Global_Forum_Proceedings/ SUGI_93. p: 990 – 995.
SAS (Statistical Analysis System) 2014. System for Windows V. 9.4. Sas Institute Inc. Cary, NC. USA.
SNIIM (Sistema Nacional de Información e Integración de Mercados). 2017. Secretaría de Economía. http:// www.economia-sniim.gob.mx/nuevo/Home.aspx?opcion=/SNIIM-Pecuarios-Nacionales/SelIng.asp?. Consultado 21 jun, 2017.
UNA (Unión Nacional de Avicultores). 2018. Compendio de Indicadores económicos del sector avícola en México año 2017. 172 p.
Yafee RA, M McGee. 1999. Introduction to time Series Analysis and forecasting. Ed., Academic Press, Inc. Brooklyn, New York. pp: 83 – 89.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Samuel Luis-Rojas, Roberto Carlos García-Sánchez, Roberto García-Mata, Oscar Antonio Arana- Coronado, Adrián González-Estrada

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish in this journal accept the following conditions:
- The authors retain the copyright and transfer to the magazine the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this magazine.
- Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) as long as they clearly indicate that the work It was first published in this magazine.
- Authors are permitted and encouraged to publish their work on the Internet (for example on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and greater and faster dissemination of the work. published (see The Effect of Open Access).